Kompetensi Dasar Matematika Kelas 5 Semester 1

Kompetensi Dasar Matematika Kelas 5 Semester 1

matematika kelas 8 uji kompetensi semester 1

1. matematika kelas 8 uji kompetensi semester 1

Mencari Persamaan Garis Lurus

10). Gradien garis yang melalui titik (1,2) dan titik (3,4) adalah

untuk mencari gradien dua titik, kita menggunakan persamaan :

m = (y₂-y₁)/(x₂-x₁)

dimana : x₁ = 1, x₂ = 3

              y₁ = 2, y₂ = 4

m = (y₂-y₁)/(x₂-x₁)

   = (4-2)/(3-1)

   = 2/2 = 1

Jadi gradien garis yang melalui kedua titik tersebut adalah 1

Jawaban : A

11). Persamaan suatu garis yang melalui titik (1,2) dan titik (3,4) adalah :

maka x₁ = 1, x₂ = 3

         y₁= 2, y₂ = 4

untuk mencari persamaan garis yang melalui dua titik dapat digunakan persamaan berikut :

(y-y₁)/(y₂-y₁) = (x-x₁)/(x₂-x₁)

(y-2)/(4-2) = (x-1)/(3-1)

(y-2)/2 = (x-1)/2

2y – 4 = 2x -2

2y = 2x -2 +4

2y = 2x + 2 atau y = x +1

Jawaban : D

12). Persamaan garis yang melalui titik (3,6)  dan sejajar dengan garis 2x + 2y = 3 adalah :

Langkah pertama yang dilakukan adalah mencari gradien garis yang diketahui dengan mengubah persamaan menjadi y = mx+c

2x + 2y = 3

2y = 3 – 2x

y = 3/2 – x

jadi gradien garis yang diketahui adalah m = -1

Dua garis yang sejajar memiliki gradien yang sama, sehingga kita bisa mencari persamaan garis yang melalui titik (3,6) dapat dicari dengan persamaan :

y-y₁ = m
(x-x₁)

y-6 = -1 (x-3)

y = -x+3+6

y = -x + 9

Jawaban : A

13). Persamaan garis yang melalui titik (-3,6) dan sejajar dengan garis 4y – 3x = 5 adalah

Mari kita ubah persamaan garis 4y-3x = 5 dalam bentuk y = mx + c untuk mencari gradien dari garis tersebut

4y – 3x = 5

4y = 5+3x

 y = 5/4 +3/4x

jadi gradien garis tersebut adalah m = 3/4

kedua garis yang sejajar mempunyai gradien yang sama, jadi persamaan garis yang melalui titik (-3,6) dapat dicari dengan persamaan berikut :

y-y₁ = m(x-x₁)

y-6 = 3/4(x+3)

y = 3/4x +9/4+6

4y = 3x +9 + 24

4y = 3x + 33

Jawaban : A atau D

14. Persamaan garis yang melalui titik (4,-3) dan tegak lurus dengan garis 4y -6x +10 = 0

Langkah pertama yaitu mengubah persamaan garis yang diketahui menjadi bentuk y = mx + c, sehingga diketahui gradien garis tersebut.

4y-6x + 10 = 0

4y = 6x -10

 y = 6/4x – 10/4

Jadi gradien garis tersebut adalah 6/4 atau 3/2.

Untuk mencari persamaan garis yang melalui titik (4,-3) dapat dicari dengan persamaan :

y-y₁ = (-1/m) (x-x₁)

y+3 = (-1/3/2)(x-4)

y+3 = -2/3(x-4) kalikan bagian kiri dan kanan dengan 3

3(y+3) = -2(x-4)

3y + 9 = -2x + 8

3y = -2x + 8 -9

3y = -2x -1

Jawaban : Tidak ada pilihan yang tepat, kemungkinan ada kesalahan pada soal.

Pelajari Lebih Lanjut

Untuk belajar lebih lanjut mengenai sistm persamaan, silakan kunjungi tautan berikut ini :

https://brainly.co.id/tugas/4342296

https://brainly.co.id/tugas/12610321

https://brainly.co.id/tugas/4641386

—————————————————-

Detil tambahan

Kelas        : VIII

Pelajaran   : Matematika

Kategori     : Persamaan Garis Lurus

Kode : 8.2.3

Kata Kunci : tegak lurus, sejajar, melalui titik

2. kunci jawaban matematika kelas 8 semester 1 hal 239 uji kompetensi 5

Uji kompetensi 5 halaman 239 kelas 8 adalah kumpulan latihan soal tentang sistem persamaan linear dua variabel. Himpunan penyelesaian sistem persamaan linear dua variabel dapat diselesaikan dengan menggunakan metode eliminasi, atau metode substitusi. Disini kita akan membahas soal tersebut dari nomor 1 sampai 5 (halaman 239)

Pembahasan

1) Himpunan penyelesaian dari 2p + q = 4 jika p dan q bilangan cacah adalah …

Jawab

2p + q = 4

q = 4 – 2p

Jika p = 0 maka q = 4 – 2(0) = 4 – 0 = 4 ⇒ (0, 4)Jika p = 1 maka q = 4 – 2(1) = 4 – 2 = 2 ⇒ (1, 2)Jika p = 2 maka q = 4 – 2(2) = 4 – 4 = 0 ⇒ (2, 0)Jika p = 3 maka q = 4 – 2(3) = 4 – 6 = -2 ⇒ bukan bilangan cacah

Jadi himpunan penyelesaiannya adalah

{(0, 4), (1, 2), (2, 0)}

Jawaban A

2) 3x + 2y – 4 = 0 ….. persamaan (1)

x – 3y – 5 = 0 …………. persamaan (2)

Dengan menggunakan metode substitusi, dari persamaan 2 diperoleh

x – 3y – 5 = 0

x = 3y + 5

Substitusikan x = 3y + 5 ke persamaan (1)

3x + 2y – 4 = 0

3(3y + 5) + 2y – 4 = 0

9y + 15 + 2y – 4 = 0

11y + 11 = 0

11y = -11

y = -1

Substitusikan y = -1 ke x = 3y + 5

x = 3(-1) + 5

x = -3 + 5

x = 2

Jadi selesaian dari sistem persamaan tersebut adalah (2, -1)

Jawaban B

3) x = a dan y = b adalah selesaian dari persamaan

2x + 3y = 12

3x + 2y = 8

——————- +

5x + 5y = 20

x + y = 4

a + b = 4

Jawaban D

4) y = 4x – 11 kita substitusikan ke

3y = -2x – 5

3(4x – 11) = -2x – 5

12x – 33 = -2x – 5

12x + 2x = -5 + 33

14x = 28

x = 2

Substitusikan ke

y = 4x – 11

y = 4(2) – 11

y = 8 – 11

y = -3

Jadi titik potong kedua garis tersebut adalah (2, -3)

Jawaban C

5) Selesaian dari persamaan berikut kita gunakan metode gabungan  eliminasi dan substitusi

3x + y = -1 |×3|

x + 3y = 5 |×1|

———————-

9x + 3y = -3

x + 3y = 5

——————- –

8x = -8

x = -1

Substitusikan x = -1 ke persamaan (1)

3x + y = -1

3(-1) + y = -1

-3 + y = -1

y = -1 + 3

y = 2

Jadi selesaian dari persamaan tersebut adalah (-1, 2)

Jawaban B

Pelajari lebih lanjut

Contoh soal lain tentang sistem persamaan linear dua variabel

https://brainly.co.id/tugas/1943861

————————————————

Detil Jawaban  

Kelas : 8

Mapel : Matematika

Kategori : Sistem persamaan linear dua variabel

Kode : 8.2.5

Kata Kunci : uji kompetensi 5

3. uji kompetensi no 5 matematika kelas 7 semester 1 kurikulum 2013

1/3 × 24 = 24/3 = 8
2/8 × 24 = 48/8 = 6
8 – 6 = 2
selisih novel mereka = 2

4. jawaban uji kompetensi matematika kelas 9 semester 1 bab 1​

Jawaban:

Itu yg latihan 1.2 kakak^^

Ig: intansekar14

5. Jawaban uji kompetensi 7 matematika kelas 8 semester 2 kurtilas

Jawaban Uji Kompetensi 7 Matematika Kelas 8 Semester 2 PG

Jawaban Pendahuluan

Soal matematika di atas merupakan materi dari lingkaran.

Pembahasan

Lingkaran adalah suatu geometri bidang atau bangun datar dimana terdapat kumpulan titik-titik yang mempunyai jarak yang bernilai sama atau tetap terhadap titik tunggal yang bersifat semu, sehingga titik-titik tersebut membentuk garis tertutup berupa lengkungan dalam satu putaran penuh secara berulang-ulang.

Pada suatu bidang lingkaran, terdapat jari-jari lingkaran (r) dan diameter lingkaran (d), sehingga bentuk persamaannya yaitu r = d/2 atau d = 2r. Rumus umum lingkaran adalah dengan menggunakan nilai konstanta pi/phi yang dinotasikan dalam π yang mempunyai nilai bilangan riil yang mendekati bilangan pecahan 22/7 dan bilangan desimal 3,14 sehingga ditulis menjadi π ≈ 22/7 ≈ 3,14.

Rumus menghitung keliling lingkaran

K = π ⋅ 2r

K = π ⋅ d

K busur = π ⋅ 2r ⋅ (m∠ / 360° )

K busur = π ⋅ d  ⋅ (m∠ / 360° )

Rumus menghitung luas lingkaran

L = π ⋅ r ⋅ r = π ⋅ r²

L = π ⋅ d/2 ⋅ d/2 = π ⋅ d²/4

L juring = π ⋅ r²  ⋅ (m∠ / 360° )

L juring = π ⋅ d²/4  ⋅ (m∠ / 360° )

Rumus untuk menghitung garis singgung persekutuan dua lingkaran adalah dengan menggunakan teorema Pythagoras, dimana j adalah garis singgung luar atau dalam lingkaran, p adalah jarak antara kedua titik pusat lingkaran, dan R dan r sebagai jari-jari lingkaran besar dan kecil.

Rumus garis singgung luar lingkaran

j² = p² – (R – r)²

Rumus garis singgung dalam lingkaran

j² = p² – (R + r)²

1.

Dik: Juring @ m∠ pusat = 90°, L = 78,5cm² (π = 3,14)

Dit: r=?

Jawab:

L juring = π ⋅ r²  ⋅ (m∠ / 360° )

78,5cm² = 3,14 ⋅ r²  ⋅ (90°  / 360° )

100cm²  = r²

r = 10cm … (pilihan A)

2.

Dik: Busur @ K = 22cm, m∠ pusat = 120° (π = 22/7)

Dit: r=?

Jawab:

K busur = π ⋅ 2r ⋅ (m∠ / 360° )

22cm = 22/7 ⋅ 2r ⋅ (120° / 360° )

r = 10,5cm … (pilihan tidak ada)

3.

Dik: Busur @ K = 16,5cm, d = 42cm (π = 22/7)

Dit: m∠ pusat=?

Jawab:

K busur = π ⋅ d ⋅ (m∠ / 360° )

16,5cm = 22/7 ⋅ 42cm ⋅ (m∠ / 360° )

m∠ = 45°  … (pilihan A)

4.

Dik: Juring @ L = 57,75cm², m∠ pusat = 60°  (π = 22/7)

Dit: d=?

Jawab:

L juring = π ⋅ r²  ⋅ (m∠ / 360° )

57,75cm² = 22/7 ⋅ r²  ⋅ (60°  / 360° )

110,25cm² = r²

r = 10,5cm  … (pilihan B)

5.

Dik: Busur @ r = 21cm, m∠ pusat = 30°  (π = 22/7)

Dit: K=?

Jawab:

K busur = π ⋅ 2r ⋅ (m∠ / 360° )

K busur = 22/7 ⋅ 2(21cm) ⋅ (30° / 360° )

K busur = 11cm  … (pilihan A)

6.

Dik: Lingkaran O

Dit: m∠BAD=?

Jawab:

2 ⋅ Sudut keliling = Sudut pusat

2 ⋅ m∠BAD = 110°

m∠BAD = 55° … (pilihan A)

7.

Dik: Lingkaran O

Dit: m∠AOB=?

Jawab:

m∠APB + m∠AQB + m∠ARB = 144°

3 ⋅ Sudut keliling = 144°

Sudut keliling = 48°

2 ⋅ Sudut keliling = Sudut pusat

2 ⋅ 48° = m∠AOB

m∠AOB = 96°  … (pilihan tidak ada)

8.

Dik: Lingkaran @ d = 0,6m

Jarak = 10000km = 10000000m

Dit: Putaran=?

Jawab:

K lingkaran * putaran = jarak

π ⋅ d * n  = 10000000m

3,14 ⋅ 0,6m * n  = 10000000m

n ≈ 5000000  … (pilihan D)

9.

Dik: Persegi @ s = 26cm

2 buah 1/4 lingkaran @ r = 14cm

Dit: K arsir=?

Jawab:

K = K persegi + K lingkaran

K = 4s + 2 ⋅ 1/4 ⋅ π ⋅ 2r

K = 4(26cm) + 1/2 ⋅ 22/7 ⋅ 2(14cm)

K = 158cm … (pilihan C)

10.

Dik: Persegi @ s = 14cm

1/2 lingkaran @ d = 14cm, r = 7cm

Dit: L arsir=?

Jawab:

L = L persegi + L lingkaran

L = s²  + 1/2 ⋅ π ⋅ r²

L = (14cm)² + 1/2 ⋅ 22/7 ⋅ (7cm)²

L = 273cm² … (pilihan C)

11.

Dik: Singgung luar

j = 12cm, rC = 7,5cm, rD = 4cm

Dit: p=?

Jawab:

p² = j² + (rC – rD)²

p² = (12cm)² + (7,5cm – 4cm)²

p = √156,25 cm²

p = 12,5cm … (pilihan A)

12.

Dik: Singgung dalam

p = 7,5cm, rA = 2,5cm, rB = 2cm

Dit: j=?

Jawab:

j² = p² – (rA + rB)²

j² = (7,5cm)² – (2,5cm + 2cm)²

j = √36 cm²

j = 6cm … (pilihan C)

13.

Dik: Singgung luar

R = 1,5cm, p = 2,5cm, j = 2,4cm

Dit: j=?

Jawab:

(R – r)² = p² –  j²

(1,5cm – r)²  = (2,5cm)² – (2,4cm)²

(1,5cm – r) ²  = 0,49cm²

1,5cm – r  = 0,7cm

r = 0,8cm … (pilihan B)

14.

Dik: Singgung luar

R = 19cm, r = 10cm, j = 40cm

Dit: p=?

Jawab:

p² = j² + (R – r)²

p² = (40cm)² + (19cm – 10cm)²

p = √1681cm²

p = 41cm … (pilihan A)

15.

Dik: Singgung luar

p = 17cm, j = 15cm

Dit: p=?

Jawab:

(R – r)² = p² –  j²

(R – r)²  = (17cm)² – (15cm)²

R – r = 8cm

R = 10cm dan r = 2cm … (pilihan D)

16.

Dik: Singgung luar

p = 15cm, j = 12cm

Dit: p=?

Jawab:

(R – r)² = p² –  j²

(R – r)²  = (15cm)² – (12cm)²

R – r = 9cm

R = 12cm dan r = 3cm … (pilihan B)

17.

Dik: Singgung luar

r1 = 13cm, p = 20cm, j = 16cm

Dit: r2=?

Jawab:

(R – r)² = p² –  j²

(R – r)²  = (20cm)² – (16cm)²

13cm – r = 12cm

r = 1cm … (pilihan B)

18.

Dik: Singgung luar

D = 15cm, R = 7,5cm

d = 10cm, r = 5cm

p = 70cm

Dit: j=?

Jawab:

j² = p² – (R – r)²

j² = (70cm)² – (7,5cm – 5cm)²

j ≈ 69cm … (pilihan A)

19.

Dik: Singgung dalam

j = 10cm, p = 8cm

Dit: p=?

Jawab:

(R + r)² = p² –  j²

(R + r)²  = (10cm)² – (8cm)²

R + r  = 6cm

R = 5cm dan r = 1cm … (pilihan B)

20.

Dik: Singgung dalam

p = 20cm, j = 16cm, r1 = 10cm

Dit: p=?

Jawab:

(r1 + r2)² = p² –  j²

(10cm + r2)²  = (20cm)² – (16cm)²

10cm + r2  = 12cm

r2 = 2cm … (pilihan A)

Kesimpulan

Pelajari lebih lanjut

—————————–

Detil Jawaban

Kelas : VIII/8 (2 SMP)

Mapel : Matematika

Bab : Bab 7 – Lingkaran

Kode : 8.2.7

Kata Kunci : lingkaran, juring, busur, sudut pusat, sudut keliling, persinggungan lingkaran

===

6. kunci jawaban halaman 66 matematika uji kompetensi 2 kelas 8 semester 1​

Kunci jawaban halaman 66 matematika uji kompetensi 2 kelas 8 semester 1. Disini saya akan menjawab 20 soal pilihan ganda dalam uji kompetensi 2.

Pembahasan

1. Diketahui titik A(3, 1), B(3, 5), C(–2, 5). Jika ketiga titik tersebut dihubungkan akan membentuk …

C. Segitiga siku-siku

(gambarnya dapat dilihat di lampiran, segitiga tersebut siku-siku di titik B)

2. Diketahui dalam koordinat kartesius, terdapat titik P, Q dan R. P(4, 6) dan Q(7, 1). Jika titik P, Q dan R dihubungkan akan membentuk segitiga siku-siku, maka koordinat titik R adalah …

D. (4, 1)

(Caranya ada di link berikut: https://brainly.co.id/tugas/12005066)

3. Koordinat titik A adalah …

C. (7, 5)

Karena x = 7 d
an y = 5

4. Koordinat titik C adalah …

B. (–4, 4)

Karena x = –4 dan y = 4

5. Koordinat titik F adalah …

D. (–8, –6)

Karena x = –8 dan y = –6

6. Koordinat titik H adalah …

C. (6, –5)

Karena x = 6 dan y = –5

7. Titik-titik yang berjarak 3 satuan terhadap sumbu X adalah …

C. titik B dan E

Karena titik B dan E berturut-turut memiliki ordinat: y = 3 dan y = –3

8. Titik-titik yang berjarak 4 satuan terhadap sumbu Y adalah …

A. titik B dan C

Karena titik B dan C berturut-turut memiliki absis: x = 4 dan x = –4

9. Titik-titik yang ada di kuadran II adalah …

B. titik C dan D

Karena titik C dan D memiliki x negatif dan y positif

10. Titik-titik yang ada di kuadran IV adalah …

D. titik G dan H

Karena titik G dan H memiliki x negatif dan y negatif

11. Garis-garis yang sejajar dengan sumbu X adalah …

D. Garis k dan l

Karena garis k dan l berturut-turut memiliki persamaan y = 3 dan y = –6

12.  Garis-garis yang sejajar dengan sumbu Y adalah …

A. garis m dan n

Karena garis m dan n berturut-turut memiliki persamaan x = –5 dan x = 2

13. Garis m dan n adalah dua garis yang …

D. Sejajar

Karena kedua garis tersebut sejajar sumbu Y

14. Garis n dan k adalah dua garis yang …

C. berpotongan

Karena memiliki titik persekutuan yaitu di titik (2, 3)

15. Garis yang berada di sebelah kanan sumbu Y adalah …

B. garis n

Karena persamaan garis n adalah x = 2

16. Garis yang berada di bawah sumbu X adalah …

D. garis l

Karena persamaan garis l adalah y = –6

17. Jarak garis m terhadap sumbu Y adalah …

D. 5 satuan

Karena persamaan garis m adalah x = –5

18. Jarak garis k terhadap sumbu X adalah …

B. 3 satuan

Karena persamaan garis k adalah y = 3

19. Koordinat titik potong garis m dan l adalah …

C. (–5, –6)

Karena persamaan garis m dan l berturut-turut adalah x = –5 dan y = –6  

20. Koordinat titik potong garis n dan l adalah …

D. (2, –6)

Karena persamaan garis n dan l berturut-turut adalah x = 2 dan y = –6

Pelajari lebih lanjut      

Contoh soal lain tentang koordinat

Jelaskan apa yang dimaksud dengan koordinat relatif!: brainly.co.id/tugas/552137 Koordinat pada bangun datar: brainly.co.id/tugas/8826902 Letak kuadran suatu titik: brainly.co.id/tugas/16884973

————————————————    

Detil Jawaban      

Kelas : 8

Mapel : Matematika  

Kategori : Bilangan Koordinat

Kode : 8.2.3

#AyoBelajar

7. Uji kompetensi 7 matematika kelas 8 semester 2​

1. Jari – jari lingkarannya adalah 10 cm

2. Jari – jari lingkarannya adalah 10,5 cm

3. Sudut pusatnya adalah 45°

4. Jari – jari lingkarannya adalah 10,5 cm

Lingkaran adalah himpunan semua titik di bidang datar yang berjarak sama dari suatu titik tetap di bidang tersebut.

Juring lingkaran adalah potongan atau bagian dari luas lingkaran jadi juring adalah luasan yang dibatasi busur dengan dua buah jari – jari. Juring adalah potongan dari luas lingkaran.

Busur lingkaran adalah garis berbentuk lengkung pada tepian lingkaran. Busur adalah potongan dari keliling lingkaran.

PEMBAHASAN :

1. Diketahui suatu juring lingkaran dengan ukuran sudut pusat 90°. Jika luas juring tersebut adalah 78,5 cm², maka sebelum kita menentukan panjang jari – jari lingkaran tersebut, kita akan menghitung luas lingkaran penuhnya karena luas juring adalah seperbagian dari luas lingkaran.

Sudut pusat juring = 90°. Dan sudut lingkaran penuh adalah 360°. Sehingga untuk mengubah luas juring ke luas lingkaran penuh, luas juring tersebut harus dikali :

360° ÷ 90° = 4 karena 90° adalah ¼ dari 360°.

Maka, luas lingkaran penuhnya adalah : 4 × luas juring

= 4 × 78,5 cm²

= 314 cm²

Sedangkan luas lingkaran dihitung dengan : π × r².

Jadi, luas lingkaran = π × r²

314 = 3,14 × r²

r² = 314 ÷ 3,14

r² = 100

r = √100

r = jari – jari lingkarannya = 10 cm

2. Diketahui panjang busur suatu lingkaran adalah 22 cm. Jika sudut pusat yang menghadap busur tersebut berukuran 120°, maka sebelum menghitung jari – jari lingkarannya, kita akan menghitung lingkaran penuhnya karena panjang busur merupakan seperbagian dari keliling lingkaran.

Sudut pusat yang menghadap busur = 120°. Sedangkan sudut lingkaran penuh = 360°. Maka, untuk mengetahui keliling lingkaran penuhnya, kita harus mengalikan panjang busur tersebut sebanyak :

360° ÷ 120° = 3 kali karena 120° adalah ⅓ dari sudut lingkaran penuh. Sehingga keliling lingkaran penuhnya adalah :

3 × 22 cm = 66 cm. Sedangkan keliling lingkaran dihitung dengan rumus : 2 × π × r.

Jadi, keliling lingkaran = 2 × π × r

66 cm = 2 × 22/7 × r.

r = 66 ÷ 44/7

r = (66 × 7) ÷ 44

r = jari – jari lingkarannya = 10,5 cm

3. Diketahui panjang busur suatu lingkaran adalah 16,5 cm. Jika panjang diameter lingkaran tersebut adalah 42 cm, maka sebelum kita menentukan sudut pusat yang menghadap busur tersebut, terlebih dahulu kita hitung keliling lingkaran penuhnya.

Keliling lingkaran = π × d

= 22/7 × 42

= 132 cm.

Sudut pusat yang menghadap ke suatu busur dapat dihitung dengan membandingkan panjang busur dan keliling lingkaran kemudian dikali 360°. Sehingga,

16,5 / 132 × 360°

= 45°

4. Diketahui suatu juring lingkaran memiliki luas 57,75 cm². Jika besar sudut pusat yang bersesuaian dengan juring tersebut adalah 60°, maka sebelum kita menghitung jari – jari lingkarannya, kita akan hitung luas lingkaran penuhnya terlebih dahulu.

Sudut yang bersesuaian dengan juring = 60°, sedangkan sudut lingkaran penuh = 360°. Maka, luas lingkaran penuhnya adalah hasil dari luas juring dikali :

360° ÷ 60° = 6, karena 60° adalah 1/6 dari 360°.

Luas lingkaran penuh = 6 × 57,75 cm²

= 346,5 cm².

Sedangkan, luas lingkaran dihitung dengan : π × r².

Jadi, luas lingkaran = π × r²

346,5 cm² = 22/7 × r²

r² = 346,5 ÷ 22/7

r² = 346,5 × 7/22

r² = 110,25

r = √110,25

r = 10,5 cm

Pelajari lebih lanjut :

Tentang menghitung jari – jari dari luas juring

https://brainly.co.id/tugas/14818153

https://brainly.co.id/tugas/14833557

Tentang menghitung jari – jari dari panjang busur

https://brainly.co.id/tugas/15170404

https://brainly.co.id/tugas/14279733

Tentang menentukan sudut pusat juring

https://brainly.co.id/tugas/14633331

https://brainly.co.id/tugas/14829909

DETAIL JAWABAN

MAPEL : MATEMATIKA

KELAS : VIII

MATERI : LINGKARAN

KATA KUNCI : JURING LINGKARAN, PANJANG. USUR, KELILING LINGKARAN, LUAS LINGKARAN, JARI – JARI LINGKARAN, SUDUT PUSAT JURING, SUDUT LINGKARAN PENUH

KODE SOAL : 2

KODE KATEGORISASI : 8.2.7

8. kunci jawaban matematika kelas 7 semester 1 himpunan uji kompetensi 2​

Jawaban:

Uji Kompetensi 2 Semester 1

A. Soal Pilihan Ganda

1. Di antara kumpulan berikut yang termasuk himpunan adalah

a. Kumpulan gunung yang tinggi

b. Kumpulan bunga yang baunya harum

c. Kumpulan hewan berkaki empat

d. Kumpulan siswa yang pandai

2. Kumpulan-kumpulan berikut ini yang bukan himpunan adalah …

a. Kumpulan siswa yang tingginya kurang dari 150 cm

b. Kumpulan bilangan cacah antara 2 dan 10

C. Kumpulan siswa yang berbadan kurus

d. Kumpulan bilangan asli kurang dari 10

3. Himpunan A = {1, 3, 5, 7, 9}, bila himpunan A dinyatakan dengan menyebutkan sifat keanggotaanya adalah

a. A = {himpunan bilangan antara 0 sampai 10

b. A = {himpunan bilangan ganjil antara 1 sampai 9)

c. A = {himpunan bilangan prima antara 0 sampai 10}

d. A = {himpunan bilangan ganjil antara 0 sampai 10}

4. himpunan semesta untuk himpunan A={1,2,3,4,5},B={x|x<2,xe bilangan bulat},dan C={bilangan asli kelipatan 3 yang kurang dari 30} adalah…

a.himpunan bilangan asli

b.himpunan bilangan cacah

c.himpunan bilangan bulat

d.himpunan bilangan cacah yang kurang dari 30

5. Banyaknya himpunan bagian dari K = {a, b, c, d, e) yang mempunyai dua anggota adalah

a. 4 himpunan

b. 8 himpunan

c. 12 himpunan

d. 16 himpunan

6. Diberikan diagram Venn yang menyatakan himpunan A dan B, maka A – B adalah

a.{a,b}

b. {b,c}

c. {e,

d. {g, h)

7. Jika P = {bilangan prima kurang dari 12} dan Q = {bilangan asli kurang dari 12}, pernyataan berikut yang benar adalah

a. 9 bukan anggota dari himpunan P dan Himpunan P bukan himpunan bagian dari himpunan Q

b. 5 bukan anggota dari himpunan P dan Himpunan P adalah himpunan bagian dari himpunan Q

c. 9 adalah anggota himpunan P dan Himpunan P bukan himpunan bagian dari himpunan Q

d. 5 adalah anggota himpunan P dan Himpunan P adalah himpunan bagian dari himpunan Q

8. Dari himpunan berikut yang merupakan himpunan kosong adalah…

a. Himpunan bilangan prima genap

b. Himpunan nama-nama hari yang diawali dengan huruf P

c. Himpunan binatang berkaki 4

d. Himpunan bulan yang diawali dengan huruf N

9. Himpunan semesta dari himpunan A = {0, 4, 8, 12, 16) adalah …

a. Himpunan bilangan asli

b. Himpunan bilangan ganjil

c. Himpunan bilangan cacah

d. Himpunan bilangan prima

10. Himpunan P = {x|2<x 8, x e Bilangan Asli), jika dinyatakan dengan mendaftar anggota-anggotanya adalah …

a. {3,4,5,6,7

b. 3, 4, 5, 6, 7,

c. {2, 3, 4, 5, 6, 7}

d. 2, 3, 4, 5, 6, 7, 8)

11. Diketahui A = {x15x8, xe bilangan Asli). Banyaknya himpunan bagian dari A yang terdiri dari 3 anggota adalah …

a. 1

b. 2

c. 3

d. 4

12. Diketahui A= {x|0<x<3, X e Bilangan Cacah dan B = {1,2,3,4,5). Irisan A dan B adalah

a. {1, 2}

b. {0, 1, 2}

c. {1,2,3}

d. {0, 1, 2, 3, 4)

13. Diberikan S = {1, 2, 3, 4, 5, 6, 7, 8, 9,10), A = {1, 2, 3, 4, 5), dan B= {4, 5, 6, 7, 8). Anggota dari A U B adalah

a. 6, 7, 8, 9)

b. {4, 5, 6, 7, 8, 9, 10}

c. {1, 2, 3, 4, 5)

d. {1, 2, 3, 4, 5, 6)

14. Banyaknya himpunan bagian dari Y ={bilangan prima lebih dari 6 dan kurang dari 20) adalah

a. 8

b. 16

c. 32

d. 64

15. Diketahui S={1, 2, 3, 4, 5, 6, 7, 8), A={1, 2, 3), dan B = {3,4,5,6). Anggota dari (A-B) B adalah

a. o

b. {3}

c. {1, 2}

d. {1,2,3}

16. Diketahui himpunan A = {1,2,3,4}, B = {bilangan prima kurang dari 6), dan C = {x|2<x< 7 x e bilangan Asli). Anggota dari (AUB) nC adalah

a. {1,2,3,4,5

b. {2,3,4,5)

c. {1,2,3,4}

d. {3,4,5)

17. Dalam suatu kelas terdapat 30 orang siswa. Di antaranya, ada 20 siswa senang pelajaran Matematika, 15 orang siswa senang pelajaran Fisika, dan 10 orang siswa senang keduanya. Banyaknya siswa yang tidak senang keduanya adalah

a. 3

b. 4

c. 5

d. 6

18. Suatu kelas yang berjumlah 25 siswa, terdapat 20 orang siswa yang senang sepak bola, 15 orang siswa senang bulu tangkis, dan 3 orang siswa tidak senang keduanya. Banyaknya siswa yang senang keduanya adalah

a. 3

b. 5

c. 8

d. 10

19. Dalam suatu kelas terdapat 20 orang siswa senang minum susu, 15 orang siswa senang minum teh, 5 siswa senang minum keduanya, dan 3 orang siswa tidak senang keduanya. Banyaknya siswa dalam kelas tersebut ada

Kunci Jawaban Uji Kompetensi Halaman 185 Semester 1

A. Pilihan Ganda

1. C

2. C

3. D

4. C

5. B

6. D

7. B

8. C

9. D

10. D

11. C

12. B

13. C

14. A

15. D

16. C

17. A

18. D

19. C

20. D

21. B

jadikan jawaban tercerdas!!!

9. matematika kelas 8 semester 2 hal 302 uji kompetensi 10​

7. Peluang empirik kemunculan mata dadu “selain 2” dalam percobaan tersebut adalah [tex]\frac{31}{36}[/tex]. Maka jawaban yang benar adalah A.

8. Peluang empirik muncul mata dadu dua pada data tersebut adalah [tex]\frac{1}{6}[/tex]. Maka jawaban yang benar adalah A.

9. Jika dilakukan pelemparan sebanyak 18 kali lagi, taksiran terbaik muncul mata dadu 2 menjadi sebanyak 9 kali. Maka jawaban yang benar adalah B.

Simak pembahasan berikut.

Pembahasan

7. Diketahui pada pelemparan sebuah dadu:

frekuensi total = x + 5 + 7 + 6 + 7 + 5

frekuensi total = x + 30

Kemunculan mata dadu 1 = x

Peluang empirik muncul mata dadu “1” = [tex]\frac{1}{6}[/tex]

Ditanya: Peluang empirik kemunculan mata dadu “selain 2”

Jawab:

Misalkan A adalah kejadian kemunculan mata dadu “1”, maka peluang empirik A dirumuskan sebagai berikut:

P(A) = [tex]\frac{n(A)}{N}[/tex]

dengan n(A) = banyak anggota A

N = total frekuensi

Karena peluang empirik mata dadu “1” diketahui, maka diperoleh persamaan berikut:

P(A) = [tex]\frac{n(A)}{N}[/tex] [tex]\frac{1}{6}[/tex] = [tex]\frac{x}{30+x}[/tex]

1(30 + x) = 6x

30 + x = 6x

30 = 6x – x

30 = 5x

x =  [tex]\frac{30}{5}[/tex]

x = 6

Maka frekuensi kemunculan mata dadu “1” adalah 6.

Misal B adalah kejadian muncul mata dadu ” selain 2″, maka banyak anggota B adalah

n(B) = 6 + 7 + 6 + 7 + 5

n(B) = 31

N = 30 + x

N = 30 + 6

N = 36

Maka peluang empirik kejadian B adalah

P(B) = [tex]\frac{n(B)}{N}[/tex]

P(B) = [tex]\frac{31}{36}[/tex]

∴ Jadi peluang empirik muncul mata dadu ” selain 2″ adalah [tex]\frac{31}{36}[/tex]

8. Diketahui pada pelemparan sebuah dadu:

Frekuensi total = 5 + 6 + 8 + 7 + 6 + 4

Frekuensi total = 36

Frekuensi muncul mata dadu 2 = 6

Ditanya: peluang empirik muncul mata dadu 2

Jawab:

Misal A adalah kejadian muncul mata dadu 2 maka peluang empirik A adalah

P(A) = [tex]\frac{n(A)}{N}[/tex]

P(A) = [tex]\frac{6}{36}[/tex]

P(A) = [tex]\frac{1}{6}[/tex]

∴ Jadi peluang empirik muncul mata dadu 2 adalah [tex]\frac{1}{6}[/tex].

9. Diketahui pada sebuah pelemparan dadu

Frekuensi muncul mata dadu 2 = 6 kali

Ditanya: taksiran terbaik muncul mata dadu 2 jika dilakukan pelemparan 18 kali lagi

Jawab:

Karena dadu bermata 6, maka jika dilakukan pelemparan 18 kali lagi, frekuensi harapan yang muncul dirumuskan sebagai berikut:

F(A) = P(A) × N

dengan P(A) adalah peluang kejadian A dan N adalah frekuensi pelemparan.

Jika A  adalah kejadian muncul mata dadu 2, maka banyak anggota A pada pelemparan sebuah dadu adal
ah:

n(A) = 1

Dan karena pelemparan sebuah dadu bermata 6, maka banyak anggota ruang sampel adalah

n(S) = 6

Sehingga, peluang kejadian A adalah:

P(A) = [tex]\frac{n(A)}{n(S)}[/tex]

P(A) = [tex]\frac{1}{6}[/tex]

Frekunsi harapan muncul mata dadu 2 jika dilakukan pelemparan 18 kali adalah:

F(A) = P(A) × N

F(A) = [tex]\frac{1}{6}[/tex] × 18

F(A) = 3

Maka taksiran terbaik muncul mata dadu dua adalah:

muncul mata dadu 2 = frekuensi muncul mata dadu 2 + frekuensi harapan muncul mata dadu 2

muncul mata dadu 2 = 6 + 3

muncul mata dadu 2 = 9

∴ Jadi taksiran terbaik muncul mata dadu 2 jika dilakukan pelemparan 18 kali lagi adalah 9.

Pelajari lebih lanjutMenghitung peluang empirik pada pengambilan kelereng https://brainly.co.id/tugas/22600646Menghitung peluang empirik pada pelemparan dadu https://brainly.co.id/tugas/22639692———————————————————-Detil jawaban

Kelas: 8

Mapel: Matematika

Bab: Peluang

Kode: 8.2.10

Kata kunci: peluang empirik, mata dadu, frekuensi harapan, peluang, frekuensi

10. jawaban matematika kelas 7 semester 2 uji kompetensi 5 halaman 54​

Jawaban:

1. Terdapat 42 siswa yang mengikuti kelas paduan suara. 31 siswa yang mengikuti kelas paduan suara adalah perempuan. Di antara proporsi berikut yang digunakan untuk menentukan x, yakni persentase siswa laki-laki yang mengikuti kelas paduan suara adalah….

Jawaban: D

x = 42 – 31/42 x 100

x = 11/42 x 100

x/100 = 11/42 atau 11/42 = x/100

2.Rasio waktu yang diluangkan Karina untuk mengerjakan tugas Matematika terhadap tugas IPA adalah 5 banding 4. Jika dia meluangkan 40 menit untuk menyelesaikan tugas Matematika, maka waktu yang dia luangkan untuk menyelesaikan tugas IPA adalah….

Jawaban: B

IPA = 4/5 x 40 menit

= 4 x 8 menit = 32 menit

3.Sebuah mesin di suatu pabrik minuman mampu memasang tutup botol untuk 14 botol dalam waktu 84 detik. Banyak botol yang dapat ditutup oleh mesin dalam waktu 2 menit adalah….

Jawaban: B

Botol = 2 menit/84 detik x 14 botol

= 120 detik/84 detik x 14 botol

= 120/6 botol

= 20 botol

4.Pak Chandra membeli kapal motor. Jika kapal motor yang beliau miliki dikendarai dengan kecepatan 32 km per jam dan menempuh jarak 80 km, kapal motor tersebut membutuhkan 24 liter solar. Pada kecepatan yang sama, solar yang dibutuhkan Pak Chandra untuk menempuh perjalanan sejauh 120 km adalah …. liter

Jawaban:

Solar = 120/80 x 24 liter

= 1,5 x 24 liter

= 36 liter

5.Pak Hendra digaji Rp360.000,00 selama 3 jam untuk memberikan pelatihan di tempat kursus. Waktu yang Pak Hendra gunakan untuk pelatihan jika beliau mendapatkan gaji Rp7.200.000,00 adalah….

Jawaban: C

Waktu = 7.200.000/360.000 x 3 jam

= 20 x 3 jam

= 60 jam

6.Suatu pekerjaan dapat diselesaikan selama 16 hari oleh 7 orang. Jika 3 pekerja ditugaskan ke pekerjaan lain, lama waktu yang bisa diselesaikan oleh pekerja yang tersisa adalah….

Jawaban: A

Waktu = 7/4 x 16 hari

= 7 x 4 hari

= 28 hari

7. 5 ons meises cokelat dijual seharga Rp10.000,00. Di antara grafik berikut yang menunjukkan hubungan antara berat dan harga meises cokelat yang dijual adalah….

Jawaban: D

8. (Soal selengkapnya lihat di buku) Penggunaan BBM yang dibutuhkan mobil Pak Bambang dari Medan sampai Padang adalah….

Jawaban:

BBM = 358 + 370/20 liter

= 728/20 liter

= 36,4 liter

9.Jamila adalah seorang perancang busana muda. Dia ingin membuka toko yang khusus menjual baju rancangannya di sebuah ruko. Dia menggambar rancangan toko seperti berikut.

Skala 1/2 in = 3 meter. Lebar toko pada gambar adalah 2 in. Lebar toko sebenarnya yang ingin dibuat Jamila adalah …. meter.

Jawaban: D

Lebar = 2/ 1/2 x 3 meter

= 4 x 3 meter = 12 meter

10.Pak Ikhsan mengendarai mobil dari rumahnya ke kota tempat beliau bekerja sejauh 276 mil dengan kecepatan rata-rata 62 mil per jam…. (soal selengkapnya lihat di buku).

Jawaban: D

kecepatan saat pulang = 276/6,5 = 42,46 mil/jam

Kecepatan saat berangkat = 62 mil/jam.

11. matematika kelas 7 semester 2 uji kompetensi 5 nomor 7 dan 8

Jadi Pak Bambang menghabiskan 36,4 liter dari Medan sampai Padang

Pembahasan

Jarak Hari pertama = 358 km

Volume Hari pertama = 358/20

Volume Hari pertama = 17,9  Liter

Jarak Hari kedua = 370 km

Volume Hari kedua = 370/20

Volume Hari kedua = 18,5 liter

Total Volume = 36,4 Liter

Jadi Pak Bambang menghabiskan 36,4 liter dari Medan sampai Padang

Pelajari lebih lanjut

1. Materi tentang  contoh soal  bilangan sejenis brainly.co.id/tugas/15691989

2.  Materi mengurutkan bilangan https://brainly.co.id/tugas/1376412

3. Contoh soal tentang bilangan sejenis https://brainly.co.id/tugas/20272232

 —————————-

Detil Jawaban

Kelas : 7  

Mapel : Matematika

 Bab : Bab 2 – Bilangan

 Kode : 7.2.2  

Kata Kunci: jarak, volume

12. jawaban uji kompetensi 7 matematika kelas 8 semester 2 PG

Jawaban Uji Kompetensi 7 Matematika Kelas 8 Semester 2 PG

Jawaban Pendahuluan

Soal matematika di atas merupakan materi dari lingkaran.

Pembahasan

Lingkaran adalah suatu geometri bidang atau bangun datar dimana terdapat kumpulan titik-titik yang mempunyai jarak yang bernilai sama atau tetap terhadap titik tunggal yang bersifat semu, sehingga titik-titik tersebut membentuk garis tertutup berupa lengkungan dalam satu putaran penuh secara berulang-ulang.

Pada suatu bidang lingkaran, terdapat jari-jari lingkaran (r) dan diameter lingkaran (d), sehingga bentuk persamaannya yaitu r = d/2 atau d = 2r. Rumus umum lingkaran adalah dengan menggunakan nilai konstanta pi/phi yang dinotasikan dalam π yang mempunyai nilai bilangan riil yang mendekati bilangan pecahan 22/7 dan bilangan desimal 3,14 sehingga ditulis menjadi π ≈ 22/7 ≈ 3,14.

Rumus menghitung keliling lingkaran

K = π ⋅ 2r

K = π ⋅ d

K busur = π ⋅ 2r ⋅ (m∠ / 360° )

K busur = π ⋅ d  ⋅ (m∠ / 360° )

Rumus menghitung luas lingkaran

L = π ⋅ r ⋅ r = π ⋅ r²

L = π ⋅ d/2 ⋅ d/2 = π ⋅ d²/4

L juring = π ⋅ r²  ⋅ (m∠ / 360° )

L juring = π ⋅ d²/4  ⋅ (m∠ / 360° )

Rumus untuk menghitung garis singgung persekutuan dua lingkaran adalah dengan menggunakan teorema Pythagoras, dimana j adalah garis singgung luar atau dalam lingkaran, p adalah jarak antara kedua titik pusat lingkaran, dan R dan r sebagai jari-jari lingkaran besar dan kecil.

Rumus garis singgung luar lingkaran

j² = p² – (R – r)²

Rumus garis singgung dalam lingkaran

j² = p² – (R + r)²

1.

Dik: Juring @ m∠ pusat = 90°, L = 78,5cm² (π = 3,14)

Dit: r=?

Jawab:

L juring = π ⋅ r²  ⋅ (m∠ / 360° )

78,5cm² = 3,14 ⋅ r²  ⋅ (90°  / 360° )

100cm²  = r²

r = 10cm … (pilihan A)

2.

Dik: Busur @ K = 22cm, m∠ pusat = 120° (π = 22/7)

Dit: r=?

Jawab:

K busur = π ⋅ 2r ⋅ (m∠ / 360° )

22cm = 22/7 ⋅ 2r ⋅ (120° / 360° )

r = 10,5cm … (pilihan tidak ada)

3.

Dik: Busur @ K = 16,5cm, d = 42cm (π = 22/7)

Dit: m∠ pusat=?

Jawab:

K busur = π ⋅ d ⋅ (m∠ / 360° )

16,5cm = 22/7 ⋅ 42cm ⋅ (m∠ / 360° )

m∠ = 45°  … (pilihan A)

4.

Dik: Juring @ L = 57,75cm², m∠ pusat = 60°  (π = 22/7)

Dit: d=?

Jawab:

L juring = π ⋅ r²  ⋅ (m∠ / 360° )

57,75cm² = 22/7 ⋅ r²  ⋅ (60°  / 360° )

110,25cm² = r²

r = 10,5cm  … (pilihan B)

5.

Dik: Busur @ r = 21cm, m∠ pusat = 30°  (π = 22/7)

Dit: K=?

Jawab:

K busur = π ⋅ 2r ⋅ (m∠ / 360° )

K busur = 22/7 ⋅ 2(21cm) ⋅ (30° / 360° )

K busur = 11cm  … (pilihan A)

6.

Dik: Lingkaran O

Dit: m∠BAD=?

Jawab:

2 ⋅ Sudut keliling = Sudut pusat

2 ⋅ m∠BAD = 110°

m∠BAD = 55° … (pilihan A)

7.

Dik: Lingkaran O

Dit: m∠AOB=?

Jawab:

m∠APB + m∠AQB + m∠ARB = 144°

3 ⋅ Sudut keliling = 144°

Sudut keliling = 48°

2 ⋅ Sudut keliling = Sudut pusat

2 ⋅ 48° = m∠AOB

m∠AOB = 96°  … (pilihan tidak ada)

8.

Dik: Lingkaran @ d = 0,6m

Jarak = 10000km = 10000000m

Dit: Putaran=?

Jawab:

K lingkaran * putaran = jarak

π ⋅ d * n  = 10000000m

3,14 ⋅ 0,6m * n  = 10000000m

n ≈ 5000000  … (pilihan D)

9.

Dik: Persegi @ s = 26cm

2 buah 1/4 lingkaran @ r = 14cm

Dit: K arsir=?

Jawab:

K = K persegi + K lingkaran

K = 4s + 2 ⋅ 1/4 ⋅ π ⋅ 2r

K = 4(26cm) + 1/2 ⋅ 22/7 ⋅ 2(14cm)

K = 158cm … (pilihan C)

10.

Dik: Persegi @ s = 14cm

1/2 lingkaran @ d = 14cm, r = 7cm

Dit: L arsir=?

Jawab:

L = L persegi + L lingkaran

L = s²  + 1/2 ⋅ π ⋅ r²

L = (14cm)² + 1/2 ⋅ 22/7 ⋅ (7cm)²

L = 273cm² … (pilihan C)

11.

Dik: Singgung luar

j = 12cm, rC = 7,5cm, rD = 4cm

Dit: p=?

Jawab:

p² = j² + (rC – rD)²

p² = (12cm)² + (7,5cm – 4cm)²

p = √156,25 cm²

p = 12,5cm … (pilihan A)

12.

Dik: Singgung dalam

p = 7,5cm, rA = 2,5cm, rB = 2cm

Dit: j=?

Jawab:

j² = p² – (rA + rB)²

j² = (7,5cm)² – (2,5cm + 2cm)²

j = √36 cm²

j = 6cm … (pilihan C)

13.

Dik: Singgung luar

R = 1,5cm, p = 2,5cm, j = 2,4cm

Dit: j=?

Jawab:

(R – r)² = p² –  j²

(1,5cm – r)²  = (2,5cm)² – (2,4cm)²

(1,5cm – r) ²  = 0,49cm²

1,5cm – r  = 0,7cm

r = 0,8cm … (pilihan B)

14.

Dik: Singgung luar

R = 19cm, r = 10cm, j = 40cm

Dit: p=?

Jawab:

p² = j² + (R – r)²

p² = (40cm)² + (19cm – 10cm)²

p = √1681cm²

p = 41cm … (pilihan A)

15.

Dik: Singgung luar

p = 17cm, j = 15cm

Dit: p=?

Jawab:

(R – r)² = p² –  j²

(R – r)²  = (17cm)² – (15cm)²

R – r = 8cm

R = 10cm dan r = 2cm … (pilihan D)

16.

Dik: Singgung luar

p = 15cm, j = 12cm

Dit: p=?

Jawab:

(R – r)² = p² –  j²

(R – r)²  = (15cm)² – (12cm)²

R – r = 9cm

R = 12cm dan r = 3cm … (pilihan B)

17.

Dik: Singgung luar

r1 = 13cm, p = 20cm, j = 16cm

Dit: r2=?

Jawab:

(R – r)² = p² –  j²

(R – r)²  = (20cm)² – (16cm)²

13cm – r = 12cm

r = 1cm … (pilihan B)

18.

Dik: Singgung luar

D = 15cm, R = 7,5cm

d = 10cm, r = 5cm

p = 70cm

Dit: j=?

Jawab:

j² = p² – (R – r)²

j² = (70cm)² – (7,5cm – 5cm)²

j ≈ 69cm … (pilihan A)

19.

Dik: Singgung dalam

j = 10cm, p = 8cm

Dit: p=?

Jawab:

(R + r)² = p² –  j²

(R + r)²  = (10cm)² – (8cm)²

R + r  = 6cm

R = 5cm dan r = 1cm … (pilihan B)

20.

Dik: Singgung dalam

p = 20cm, j = 16cm, r1 = 10cm

Dit: p=?

Jawab:

(r1 + r2)² = p² –  j²

(10cm + r2)²  = (20cm)² – (16cm)²

10cm + r2  = 12cm

r2 = 2cm … (pilihan A)

Kesimpulan

Pelajari lebih lanjut

—————————–

Detil Jawaban

Kelas : VIII/8 (2 SMP)

Mapel : Matematika

Bab : Bab 7 – Lingkaran

Kode : 8.2.7

Kata Kunci : lingkaran, juring, busur, sudut pusat, sudut keliling, persinggungan lingkaran

===

13. Jawaban Matematika kelas 7 semester 2 uji kompetensi 5 halaman 53 no 5 dan 6

Jawaban:

no

5.c 60 jam

6.a 28 hari

Penjelasan dengan langkah-langkah:

5 penyelesaian

diketahui pak hendra digaji Rp.360.000,00 untuk pelatihan selama 3 jam.kemudian,dengan menggunakan perbandingan senilai kita da
pat menentukan lamnya pelatihan bila mendapatkan gaji Rp.7.200.000,00

Rp.360.000->3 jam

Rp.7.200.000->x jam

360.000. 3

————– = ——-

7.200.000. x

<->360.000 dikalikan dengan x.=7.200.000×3

<->360.000x=21.600.000

<->. x=21.600.000

—————–

360.000

<-> x=60

jadi, jika pak hendra digaji Rp 360.000,00 untuk pelatiahan selama 3 jam, maka pak hendra digaji Rp 7.200.000 untuk pelatihan selama 60 jam.

6)penyelesaian:

diketahui:

7 pekerja, selesai 16 hari

3 pekerja ditugaskan ditempat lain

ditanya:

lama waktu yang bisa diselesaikan olr pekerja yang tersisa adalah?

jawab:

7. x

— = —

4. 16

4dikali x=7×16

4x=112

x=112:4

x=28

jadi waktu yang dibutuhkan oleh pekerja adalah 28 hari

14. jawaban evaluasi kompetensi siswa 1 Matematika kelas 8 semester 1 halaman 7 – 8 ​

Jawaban:

1.B

2.D

3.-

4-

5-

6-

7.D

8-

9-

10-

11.A

penjelasan:

maaf ya jika salah

15. jawaban uji kompetensi 6 matematika kelas 8 semester 2 hal 45

Jawaban uji kompetensi 6 matematika kelas 8 semester 2 hal 45

Teorama Pythagoras adalah rumus untuk mencari sisi-sisi pada segitiga siku-siku

Bunyi Teorema Pythagoras adalah Kuadrat sisi miring sama dengan jumlah kuadrat kedua sisi penyikunya

Sisi miring / Hipotenusa biasanya sisi yang terpanjang diantara sisi-sisi lainnya

Pembahasan :

1. Diketahui segitiga KLM dengan panjang sisi-sisinya k, l, dan m.

Pernyataan berikut yang benar dari segitiga KLM adalah ….

a. Jika m² = l² + k², besar ∠K = 90°

b. Jika m² = l² − k², besar ∠M = 90°

c. Jika m² = k² − l², besar ∠L = 90°

d. Jika k² = l² + m², besar ∠K = 90° (Benar)

Diketahui :

Segitiga KLM dengan panjang sisi k, l dan m

Ditanya :

Pernyataan yang benar ?

Dijawab :

Lihat gambar ilustrasi

a. Jika m² = l² + k², besar ∠K = 90°

Apabila ∠K = 90° maka sisi miring adalah sisi k

maka menurut Rumus Pythagoras :

k² = l² + m² (Pernyataan salah)

b. Jika m² = l² − k², besar ∠M = 90°

Apabila ∠M = 90° maka sisi miring adalah sisi m

maka menurut Rumus Pythagoras :

m² = k² + l² (Pernyataan salah)

c. Jika m² = k² − l², besar ∠L = 90°

Apabila ∠L = 90° maka sisi miring adalah sisi l

maka menurut Rumus Pythagoras :

l² = k² + m² (Pernyataan salah)

D. Jika k² = l² + m², besar ∠K = 90°

Apabila ∠K = 90° maka sisi miring adalah sisi k

maka menurut Rumus Pythagoras :

k² = l² + m² (Pernyataan benar)

2. Perhatikan gambar berikut. Panjang sisi PQ = … cm.

a. 10      c. 13

b. 12      d. 14

Diketahui :

PR = 26cm

QR = 24cm

Ditanya :

PQ ?

Dijawab :

PQ² + QR² = PR²

PQ² + 24² = 26²

PQ² + 576 = 676

PQ² = 676 – 576

PQ = √100 = 10 cm (A)

3. Diketahui kelompok tiga bilangan berikut.

(i) 3, 4, 5          (iii) 7, 24, 25

(ii) 5, 13, 14      (iv) 20, 21, 29

Kelompok bilangan di atas yang merupakan tripel Pythagoras adalah ….

a. (i), (ii), dan (iii)          c. (ii) dan (iv)

b. (i) dan (iii)                  d. (i), (ii), (iii), dan (iv)

Diketahui :

kelompok tiga bilangan berikut.

(i) 3, 4, 5         (iii) 7, 24, 25

(ii) 5, 13, 14     (iv) 20, 21, 29

Ditanya :

Kelompok bilangan diatas yang merupakan Triple Pythagoras ?

Dijawab :

(i) 3, 4, 5    

sisi miring = 5

5² = 3² + 4²

25 = 9 + 16

25 = 25 (Terbukti)    

(ii) 5, 13, 14  

Sisi miring = 14

14² = 5² + 13²

196 = 25 + 169

196 ≠ 194 (Tidak terbukti)

(iii) 7, 24, 25

Sisi miring = 25

25² = 7² + 24²

625 = 49 + 576

625 = 625 (Terbukti)

(iv) 20, 21, 29

Sisi miring = 29

29² = 20² + 21²

841 = 400 + 441

841 = 841 (Terbukti)

Jadi yang merupakan triple pythagoras adalah (i), (III) dan (iv) (B)

4. (i) 3 cm, 5 cm, 6 cm       (iii) 16 cm, 24 cm, 32 cm  

(ii) 5 cm, 12 cm, 13 cm       (iv) 20 cm, 30 cm, 34 cm

Ukuran sisi yang membentuk segitiga lancip ditunjukkan oleh ….

a. (i) dan (ii)         c. (ii) dan (iii)

b. (i) dan (iii)        d. (iii) dan (iv)

Diketahui :

(i) 3 cm, 5 cm, 6 cm          (iii) 16 cm, 24 cm, 32 cm  

(ii) 5 cm, 12 cm, 13 cm       (iv) 20 cm, 30 cm, 34 cm

Ditanya :

Ukuran sisi yang merupakan segitiga lancip adalah ?

Dijawab :

Persamaan sisi segitiga :

c = sisi miring

c² > a² + b² (Segitiga tumpul)

c² = a² + b² (Segitiga siku-siku)

c² < a² + b² (Segitiga lancip)

(i).   3 cm , 5 cm, 6 cm

c = 6cm

6² > 3² + 5²

36 > 9 + 25

36 > 34  

segitiga tumpul, karena c² > a² + b²

(ii).  5 cm , 12 cm, 13 cm

c = 13cm

13²  = 5² + 12²

169 = 25 + 144

169 = 169

Segitiga siku-siku, karena c² = a² + b²

(iii).  16 cm , 24 cm, 32 cm

c = 32cm

32² > 16² + 24²

1024 > 256 + 576

1024 > 832

Segitiga tumpul, karena c² > a² + b²

(iv).  20 cm , 30 cm, 34 cm

c = 34cm

34² < 20² + 30²

1156 < 400 + 900

1156 < 1300

Segitiga lancip, karena c² < a² + b²

Yang merupakan segitiga lancip adalah (iv) (Tidak ada jawaban)

Pelajari lebih lanjut :

Soal tentang Teorema Pythagoras :

1. brainly.co.id/tugas/21164772

2. brainly.co.id/tugas/21043142

3. brainly.co.id/tugas/21094843

==========================

Detail Jawaban :

Kelas : VIII

Mapel : Matematika

Bab : Bab 4 – Teorema Pythagoras

Kode : 8.2.4

Kata kunci : Uji kompetensi 6, kelas 8 semester 2, hal 45, teori Pythagoras

16. Uji kompetensi 5, hal 240, matematika kelas 8 semester 1, nomor 6-10​

jawabannya kak

6.b

7.c

8.b

9.c

10.a

17. Matematika uji kompetensi 7 kelas 9 semester 2

Kategori soal : matematika – peluang
Kelas : 9 SMP
Pembahasan : soal dan jawaban terlampir

18. Jawaban Matematika kelas 7 semester 2 uji kompetensi 5 halaman 53?

Jawaban Matematika kelas 7 semester 2 uji kompetensi 5 halaman 53 adalah Soal Perbandingan

Pembahasan :

1. Terdapat 42 siswa yang mengikuti kelas paduan suara. 31 siswa yang mengikuti kelas paduan suara adalah perempuan. Di antara proporsi berikut yang digunakan untuk menentuk
an x, yakni persentase siswa laki-laki yang mengikuti kelas paduan suara adalah ….

Diketahui :

Total = 42 siswa

Perempuan = 31 siswa

Persentase siswa laki-laki = x

Ditanya :

Proporsi yang digunakan untuk menentukan x ?

Dijawab :

Jumlah siswa laki-laki yang mengikuti paduan suara = 42 – 31 = 11 orang

Persentase siswa laki-laki (11 orang) = x

Persentase total siswa (42 orang) = 100

Maka perbandingan senilainya adalah :

[tex]\frac{siswa\:laki-laki}{jumlah\:siswa} = \frac{persentase\:laki-laki}{persentase\:total\:siswa}[/tex] [tex]\frac{11}{42} = \frac{x}{100}[/tex] (D)

2. Rasio waktu yang diluangkan Karina untuk mengerjakan tugas Matematika terhadap tugas IPA adalah 5 banding 4. Jika dia meluangkan 40 menit untuk menyelesaikan tugas Matematika, maka waktu yang dia luangkan untuk menyelesaikan tugas IPA adalah …

a. 20 menit c. 60 menit

b. 32 menit d. 90 menit

Diketahui :

Rasio Mat : IPA = 5 : 4

Mat = 40 menit

Ditanya :

Waktu untuk menyelesaikan Tugas IPA ?

Dijawab :

Mat : IPA

40 : IPA = 5 : 4

[tex]\frac{40}{IPA} = \frac{5}{4}[/tex]

40 x 4 = 5 x IPA

160 = 5 IPA

IPA = 160 : 5

IPA = 32 menit (B)

3. Sebuah mesin di suatu pabrik minuman mampu memasang tutup botol untuk 14 botol dalam waktu 84 detik. Banyak botol yang dapat ditutup oleh mesin dalam waktu 2 menit adalah …

a. 16 botol c. 28 cm

b. 20 botol d. 35 cm

Diketahui :

14 botol dalam 84 detik

Ditanya :

Tutup botol yang dapat dipasang dalam waktu 2 menit ?

Dijawab :

2 menit = 2 x 60 = 120 detik

Maka kita gunakan perbandingan senilai :

[tex]\frac{84}{120} = \frac{14}{x}[/tex]

84x = 120 x 14

84x = 1.680

x = 1.680 : 84 = 20 botol (B)

4. Pak Chandra membeli kapal motor. Jika kapal motor yang beliau miliki dikendarai dengan kecepatan 32 km per jam dan menempuh jarak 80 km, kapal motor tersebut membutuhkan 24 liter solar. Pada kecepatan yang sama, solar yang dibutuhkan Pak Chandra untuk menempuh perjalanan sejauh 120 km adalah … liter.

a. 7 1/2              c. 12

b. 9                    d. 20

Diketahui :

v = 32km/jam

s1 = 80km

solar = 24liter

Ditanya :

Solar yang dibutuhkan untuk perjalanan sejauh 120km?

Dijawab :

80km = 24liter

120km = n liter

Maka kita gunakan perbandingan senilai

[tex]\frac{80}{120} = \frac{24}{n}[/tex]

80n = 120 x 24

80n = 2.880

n = 2.880 : 80 = 36 liter (Tidak ada di pilihan ganda)

Pelajari lebih lanjut :

Soal tentang perbandingan senilai :

1. https://brainly.co.id/tugas/21119397

2. https://brainly.co.id/tugas/21169049

==========================

Detail Jawaban :

Kelas : VI

Mapel : Matematika

Bab : Bab 9 – Perbandingan senilai dan berbalik nilai

Kode : 6.2.9

Kata Kunci : Uji kompetensi 5, perbandingan

19. Jawaban matematika kelas 8 uji kompetensi semester 1 no. 1,4,6,9,11,13,16,17,19,20​

Jawab:

Soalnya mana???

Penjelasan dengan langkah-langkah:

20. jawaban evaluasi kompetensi siswa 1 Matematika kelas 8 semester 1 halaman 7 -8​

Jawaban:

SEMOGA BERMANFAAT!!

SEMANGAT BELAJAR YA!!!

Video Terkait